138 research outputs found

    Model Based Mission Assurance: NASA's Assurance Future

    Get PDF
    Model Based Systems Engineering (MBSE) is seeing increased application in planning and design of NASAs missions. This suggests the question: what will be the corresponding practice of Model Based Mission Assurance (MBMA)? Contemporaneously, NASAs Office of Safety and Mission Assurance (OSMA) is evaluating a new objectives based approach to standards to ensure that the Safety and Mission Assurance disciplines and programs are addressing the challenges of NASAs changing missions, acquisition and engineering practices, and technology. MBSE is a prominent example of a changing engineering practice. We use NASAs objectives-based strategy for Reliability and Maintainability as a means to examine how MBSE will affect assurance. We surveyed MBSE literature to look specifically for these affects, and find a variety of them discussed (some are anticipated, some are reported from applications to date). Predominantly these apply to the early stages of design, although there are also extrapolations of how MBSE practices will have benefits for testing phases. As the effort to develop MBMA continues, it will need to clearly and unambiguously establish the roles of uncertainty and risk in the system model. This will enable a variety of uncertainty-based analyses to be performed much more rapidly than ever before and has the promise to increase the integration of CRM (Continuous Risk Management) and PRA (Probabilistic Risk Analyses) even more fully into the project development life cycle. Various views and viewpoints will be required for assurance disciplines, and an over-arching viewpoint will then be able to more completely characterize the state of the project/program as well as (possibly) enabling the safety case approach for overall risk awareness and communication

    Model Based Mission Assurance in a Model Based Systems Engineering (MBSE) Framework: State-of-the-Art Assessment

    Get PDF
    This report explores the current state of the art of Safety and Mission Assurance (S&MA) in projects that have shifted towards Model Based Systems Engineering (MBSE). Its goal is to provide insight into how NASA's Office of Safety and Mission Assurance (OSMA) should respond to this shift. In MBSE, systems engineering information is organized and represented in models: rigorous computer-based representations, which collectively make many activities easier to perform, less error prone, and scalable. S&MA practices must shift accordingly. The "Objective Structure Hierarchies" recently developed by OSMA provide the framework for understanding this shift. Although the objectives themselves will remain constant, S&MA practices (activities, processes, tools) to achieve them are subject to change. This report presents insights derived from literature studies and interviews. The literature studies gleaned assurance implications from reports of space-related applications of MBSE. The interviews with knowledgeable S&MA and MBSE personnel discovered concerns and ideas for how assurance may adapt. Preliminary findings and observations are presented on the state of practice of S&MA with respect to MBSE, how it is already changing, and how it is likely to change further. Finally, recommendations are provided on how to foster the evolution of S&MA to best fit with MBSE

    Enabling Assurance in the MBSE Environment

    Get PDF
    A number of specific benefits that fit within the hallmarks of effective development are realized with implementation of model-based approaches to systems and assurance. Model Based Systems Engineering (MBSE) enabled by standardized modeling languages (e.g., SysML) is at the core. These benefits in the context of spaceflight system challenges can include: Improved management of complex development, Reduced risk in the development process, Improved cost management, Improved design decisions. With appropriate modeling techniques the assurance community can improve early oversight and insight into project development. NASA has shown the basic constructs of SysML in an MBSE environment offer several key advantages, within a Model Based Mission Assurance (MBMA) initiative

    Optimizing the Design of Spacecraft Systems Using Risk as Currency

    Get PDF
    Abstract-Treating risk as a "currency" has proven to be key in systematically optimizing the design of spacecraft systems. This idea has been applied in the design of individual components of spacecraft systems, and in the end-to-end design of such systems. The process, called "Defect Detection and Prevention" (DDP), its tool support, and applications, are described in We are now extending this process to include consideration of architectural alternatives, qualification of components, fabrication and assembly, integration and test, and mission operation. The results of applying this extended process in the pre-formulation, formulation and implementation phases of various NASA and other government agency missions will be discussed. This paper will also discuss the results of developing optimized technology development and qualification plans

    The NASA Software Research Infusion Initiative: Successful Technology Transfer for Software Assurance

    Get PDF
    New processes, methods and tools are constantly appearing in the field of software engineering. Many of these augur great potential in improving software development processes, resulting in higher quality software with greater levels of assurance. However, there are a number of obstacles that impede their infusion into software development practices. These are the recurring obstacles common to many forms of research. Practitioners cannot readily identify the emerging techniques that may most benefit them, and cannot afford to risk time and effort in evaluating and experimenting with them while there is still uncertainty about whether they will have payoff in this particular context. Similarly, researchers cannot readily identify those practitioners whose problems would be amenable to their techniques and lack the feedback from practical applications necessary to help them to evolve their techniques to make them more likely to be successful. This paper describes an ongoing effort conducted by a software engineering research infusion team, and the NASA Research Infusion Initiative, established by NASA s Software Engineering Initiative, to overcome these obstacles

    Fusing Quantitative Requirements Analysis with Model-based Systems Engineering

    Get PDF
    A vision is presented for fusing quantitative requirements analysis with model-based systems engineering. This vision draws upon and combines emergent themes in the engineering milieu. “Requirements engineering” provides means to explicitly represent requirements (both functional and non-functional) as constraints and preferences on acceptable solutions, and emphasizes early-lifecycle review, analysis and verification of design and development plans. “Design by shopping” emphasizes revealing the space of options available from which to choose (without presuming that all selection criteria have previously been elicited), and provides means to make understandable the range of choices and their ramifications. “Model-based engineering” emphasizes the goal of utilizing a formal representation of all aspects of system design, from development through operations, and provides powerful tool suites that support the practical application of these principles. A first step prototype towards this vision is described, embodying the key capabilities. Illustrations, implications, further challenges and opportunities are outlined

    A Framework for Reliability and Safety Analysis of Complex Space Missions

    Get PDF
    Long duration and complex mission scenarios are characteristics of NASA's human exploration of Mars, and will provide unprecedented challenges. Systems reliability and safety will become increasingly demanding and management of uncertainty will be increasingly important. NASA's current pioneering strategy recognizes and relies upon assurance of crew and asset safety. In this regard, flexibility to develop and innovate in the emergence of new design environments and methodologies, encompassing modeling of complex systems, is essential to meet the challenges

    Regional Selection Acting on the OFD1 Gene Family

    Get PDF
    The OFD1 (oral-facial-digital, type 1) gene is implicated in several developmental disorders in humans. The X-linked OFD1 (OFD1X) is conserved in Eutheria. Knowledge about the Y-linked paralog (OFD1Y) is limited. In this study, we identified an OFD1Y on the bovine Y chromosome, which is expressed differentially from the bovine OFD1X. Phylogenetic analysis indicated that: a) the eutherian OFD1X and OFD1Y were derived from the pair of ancestral autosomes during sex chromosome evolution; b) the autosomal OFD1 pseudogenes, present in Catarrhini and Murinae, were derived from retropositions of OFD1X after the divergence of primates and rodents; and c) the presence of OFD1Y in the ampliconic region of the primate Y chromosome is an indication that the expansion of the ampliconic region may initiate from the X-degenerated sequence. In addition, we found that different regions of OFD1/OFD1X/OFD1Y are under differential selection pressures. The C-terminal half of OFD1 is under relaxed selection with an elevated Ka/Ks ratio and clustered positively selected sites, whereas the N-terminal half is under stronger constraints. This study provides some insights into why the OFD1X gene causes OFD1 (male-lethal X-linked dominant) and SGBS2 & JSRDs (X-linked recessive) syndromes in humans, and reveals the origin and evolution of the OFD1 family, which will facilitate further clinical investigation of the OFD1-related syndromes
    corecore